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The indentation of punches of wedge-like and rectangular planform into a 

plastic half-space is Investigated in this paper. 

These problems are further developments of known results obtained by 
Prandtl [l 1. It should be noted that the corresponding axisymmetrical 
problems have been solved by Ishlinskil [ 13 I and Shield 19 1. 

First, the thebry of the state of a spherical deformation, of which 
the theory of the state of a plane deformation Is a special case, is con- 
sidered. The generalization is based on properties of various coordinate 
systems, to include some other systems as special cases. Thus. the 
rectangular Cartesian coordinate system can be looked at as a degenerate 
case of a cylindrical and spherical systems, etc. 

In the case analyzed in this paper the spherical system constitutes 
the original. 

1. ‘Ihe equilibria equation in spherical coordinates has the 

form. 

f; + $ % + -J-& 2 + $ [2s, - 50 - zjy + Qgctgfi] = 
0 

a~+~~;+L@~+ $ [(5;e - z&g0 + 3r,f3]=0 

-&z+ $[3r,, -t 2QJp c.tg e] = 0 

following 

0 

(1.1) 

‘Ihe angle 8 is measured between the radii and the positive direction 

of the z-axis, qb is the angle measured around the z-axis to the right. 

Denoting by u, u, II, the displacement velocities along the axes, the 
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expressions for the components of the rate of deformation tensor are 

395 

&L 1 
Ep=-, 

aP 
EFJv= - 

2psine ( sinO$--co&+%) 
a9 

Ee = $($+u), 1 
%v = A&g+:-;) 

1 
-( 

8W 1 av E, = - + usin + v COSQ ~~~ = - 
pelne a? ( --$++$j (1.2) 

2 a9 

Let us assume that 

u = PU* (0, (i), u = PV* (4 CP), w = PW’ (4 ‘PI (1.3) 

Obviously, in this case the conponents 6 . . are independent of the 
quantity p. It then follows that it is posse ‘L le to seek a solution in 
the form o = o ij ij (e, 9). 

Let us further assune that 

Qlj = Tp7 = 0 (1.4) 

Then from the first equilibrium equation we get 

Op = f (%3 + %) (1.3) 

It should be noted that relationship (1.51 follows from (1.4) and the 
equilibrium equations, 

We also assume that the Tresca plasticity condition is fulfilled. From 

(1.4) and (1.5) it follows that the state of stress cannot correspond to 
the edge of the Tresca prism (the condition of full plasticity). It 

corresponds to the face of this prism. Because of (1.4) and (1.5) the 

third invariant of the stress deviation tensor is zero. Thus, following 

18 1, we get 
. 

(30 - oc)Z -I&), zz r,/p (1.6) 

Ep = u* = 0, au* 
fo = dO = i.(30 - 3;) 

c.- - 7 & g$ + z~‘coso~ =- h(3, - 3”) * (1.i) 

co7 = & \sidl %o$ - W* cos 8 f $) = 2j.To9. Epo -- sp; = 0 

It is easy to see 
(1.6) and (1.7) will 

that under conditions (1.3) and (1.4), relationships 

dition (except for a 
also be satisfied for the von Mises plasticity con- 
constant term on the right-hand side of (1.6). The 

equations (1.1) will now have the following form: 
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da, 1 aT3(o 
x+7- 

sin 0 &q 
$ (0” -. 7J ct g e = 0 

J$ + -&3+2:“4gfJ=O 

(1.8) 

The resulting state is called a spherical deformation state, analog- 
ously to the plane deformation state. Indeed, if the latter is considered 

to take place on scnne plane, the former takes place on some spherical 

surface, Obviously the spherical deformation state also includes the 

plane deformation state as a special case. To show this it is sufficient 

to perform the following change of coordinates: 

x = &, y = R (0 - 1/2n) (7 -. \ 0, 0 --z 1/2c, R -7 CG) 

ux = Rw*, uy = Xv’ (2.’ ---, 0 w* -+ 0) 

where u x’ KY 
are the displacements along the x- and y-axes, respectively. 

‘lke relationship ( 1.6) is satisfied by setting 

z8 = 2kp -j- k cos 2+, sp = 2kp -- k cos 2+, 7oq = k sin 24.1 (1.9) 

Substituting (1.9) into (1.8) we get 

ap --sin2+a~+~~+cos21)ctgO=0 
ae 

cos2+$$4&~+%$$~+ +silk2c)clgB=O 

The characteristics of equation (1.10) are 

(1.10) 

(1.11) 

It is easy to prove that along the line (1.11) the following relation- 

ships are satisfied: 

dp + dJ, &- cosfJdy = 0 (1.12) 

These relationships are generalizations of well known Ikncky integrals 

[31. 

Now consider equations for the displacement velocities. The relation- 

ships (1.7) yield two equations for the determination of the two conpo- 

nents V* and tu*. One of these equations is 

El) + Ep = 0 

and the second can be recorded in the following form 
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@w - %V 

E --E 
(1.13) 

a c Qe-% 

Rewriting these equations in terms of displacement velocity components, 

taking into account (1.91, and dropping the asterisks, we get 

g+ -&g+vctge=o 

2$sin2$ -ccos2~~~+~~~--ctge)=o (1.14) 

It is easy to show that the characteristics of (1.14) can be expressed 

by (1.11). Along these characteristics the relations which are the general- 

izations of the known Hencky relationships [ 4 I will be satisfied. 

cos e+ Iv tg ($ & ‘/*r) - 101 + dv + dw tg.($ & ‘,‘& = 0 (1.15) 

(This is seen if we consider (1.15) as a relationship between the velo- 

city components along the characteristics. > 

In order to investigate the properties of the characteristics, we 

utilize the method of investigation proposed by Khristianovich [ 5 I ,f6 3. 

Let us assume that a(@, #s) = const and /3(@, +) = const are the equa- 
tions of the two families of characteristics. 

Then 

as well as 

& 4 (4 -- 

a@ 

-‘/4x) a 0 

sin e @ia- , ap a+ 
case 9 =o d! - 27 - ’ a$ 

~-~g(/r-+)~+ cos 0 [Iv tg (+- ;> -w] $ = 0 (1.17) 

Assuming that $8~ ff% (a), v = Y (a), w = tu (a), it will be possible to 

consider a as a parameter of $. Hence, equations (1.7) will acquire the 

form 

?- tg (+- +) In tg + =(o,(+), p-++tgc#-+)lnsirlO = CD,(+) (1.18) 

U-tg(~-~)w+[vIg(~--Si_!--zo]tg~~-_~InsinO=cD,(~) 
/ 

The first family of the characteristics consists of the lines (1.18) 
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for I,$ = const. The second family is found by integrating the systems (1.16), 

lhe case I/J = I$ (0) is considered in an analogous manner. Let $3 const. 

In this case 

‘P--tg($+ +tg+= e,(p) (1.20) 

P + (I, + tg (4 + $1 ln sin4 = @,(B> 

v +tg(~f;)~+S[vtgjrl+~j--w]cosedrp=~~(~) 

y + tg (+--+) In tg + = 8* (a) 

p - (c - tg (+-- 5) In sin 8 =8, (a) 

~-tg(~-~$)~+~[~t~(~--;)-~]00~ed~=(3,~~~ 

2. The results of the theory of plane deformation can be generalized 

for the case of spherical deformation. 

Insider a generalization of Prandtl’s solution [ 1 1 of the problem of 

a rigid punch on a plastic half-space. Let e = const; this respresents a 

part of a half-space bounded by a circular cone. The generalized Prandtl 

punch in this case will be in contact with the half-space over a part of 

a surface bounded by two radii. 

Fig. 1. 

Of the greatest interest is the simplest case, when 0 = l/2 n. In this 



Rigid punch indentation into a plartic half-space 399 

case we have the indentation into a plastic half-space by a wedge-shaped 

punch. Figure 1 represents the projection of the punch on the boundary 
plane. Note that an analogous elastic problem has been considered by 

Galin[71. 

Fig. 2. 

Consider an auxiliary 0q5 plane (Fig. 21, for - R 4 $4 R, 19 ) l/2 n. 

Assune that normal pressure is acting along the line A B which produces 

a plastic state in the region CAOFE, and similarly in the symmetrical 

region. 

The stress distribution in the regions CA E and AOE is clearly in- 

dependent of 4. From (1.10) we therefore obtain 

sin 2+ = & , cl = const (2.1) 

Since, however, Z,J + = 0 for 8 = l/2 R, then c1 = 0 in (2.11, and, con- 

sequently, re+ = 0 everywhere in the regions ACE and A OF. 

Next we find that in these regions 

p = r.lnsin8 +cz, cz = const (2.2) 

where K = - 1 for (J= 0, + R, . ..) ; K = 1 for I/I = i v/2, 2 3/2 R. !~SSUIIP 

ing that in the regions CAE the stress component u 
4 

is 

stress, we can put $ = 0. Thus, from the condition 00 = 

for this region we get 

cz = - ‘jz 

a compressive 

0 fore= 1/2x, 

Assuming that in the region A OF the component oh is a tensile stress, 

and that the pressure on A0 equals q, and putting $ = l/2 n, for this 

region we get 

c2= $(qf2k)/k 

The unknown pressure q is obtained by matching the regions CA E and 

A OF by the construction of a plastic region EAF. The latter is obviously 

a generalization of the fan-region introduced by Prandtl. 

The integral should be taken 

p - c# = tg (+ - l/*z) ln sin 9 f cg, cQ = const 
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From the matching condition we obtain 

q= -k(2$7t) 

Rms, the pressure necessary to produce plastic deformation by a wedge- 
shaped punch on a half-space is shown to be identical with the pressure 

to produce the same effect by a punch in the shape of an infinite strip 

(Prandtl’s solution). 

The displacement velocity field is determined from (1.14). Now consider 

the plastic flow along the rigid boundary OFEC, Figure 2. QI the bound- 

ary A 0 the normal velocity is given, u = 1. Since in the regions CA E 
and A OF sin 2 (J = 0, the flow in these regions is shearless. On the 

boundaries AFand AEthere are possible velocity discontinuities along 

the tangential directions to these boundaries. 

‘Ihe problem of the determination of the displacement velocity field 

can be solved numerically, It will give the change of the coordinate net 

in some instant close to,the initial instant of indentation. Clearly, the 

maximum value of the angle AOB (Fig. 1) in the case analyzed here is 

2/3 n. 

3. Applying Prandtl’s method [ 2 I , we obtain another exact solution of 

the theory of ideal plasticity. 

Assume that r,+= f(0). From (1.6), (1.8) we get 

30 - s3 zzz 2tr j/k’ -I’ (07, :” = sip (50 - SE) (3.1) 
3ao 

-8 f (38 - ‘q) ctg 8 =o, (:j.a) 

Putting 

sinOzO + 2fctg0 = B, (B, = const) 

we find 

i(f)) = 
I?*-&cosO 

sin” 0 (Bz =const) 

From (3. l), (3.21, (3.3) we find that 

(3.3) 

zj 7 - 2;~ 
s 

1,‘ck2 - 12 (0) ct g ode - I+, 1 ‘k2 - p (0) ctg e + x (?) 

It is obvious that 
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Putting u = v (0), w = w (81, we determine the displacement velocity 

field as follows: 

B3 
u=-, 

sin0 

f(e)cos 8 de 
_- 

Vkqye) sin38 
+B, sin0 

1 

Were Bg and B, are some constants. 

4. Assume that the punch pressing on the half-space has a rectangular 

projection, shown in Figure 3 as a rectangle A BCO . 

Fig. 3. 

Assume also that the plasticity condition is as expressed in [ 8 1. 

The plasticized portions of the material appear on the surface of the 

ha1 f-space in the regions B CE F and A BC H Figure 3. 

We will assume that in the region ABCOa uniformly distributed pressure 

q is acting. 
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Obviously, the equilibrium conditions and the plasticity conditions 

(4.1) are satisfied for 

r xy = Tblz = T’zx = 0, =z = q, ax = uy = q + 2k (4.2) 

It is also obvious that in the plasticized regions B CE F and A BC H 
we must put 

r xy=Qr=rC,=O, 0, = 0, u, = oy -G - 2k (4.3) 

The unknown pressure q is determined from the matching conditions of 

the plastic regions under the areas A BCOand BCEF, A BCH, Figure 3. For 

this purpose we utilize the regions of the type shown in Figure 4, which 

we will call sector regions. To find the stress and strain distribution 

in these regions we use cylindrical coordinates p 0[. Assuming that all 

stress canponents in the sector depend only on the angle 8, we get 

(4.4) 

Next, assuming TO t = rp t = 0, we obtain 

‘cpe = k, cP = Go = 2k (c - 0) to< 0 < ‘/2n) 
aE = 2k (c - 0) - k, c = const (4.5) 

In the regions which lie at the angle l/4 x.to the axis, where the con- 

ditions (4.2) and (4.3) are fulfilled, we have 

q,= k, o,=q+k, in=-k, o,= - k (4.6) 

‘lhus, from the matching conditions it is easy to find that 

q=-k(2+r) 

Ch the matching boundaries of the plastic regions 

are continuous except for ut on A K and C N, Figure 3. 

(4.71 

all stress components 

I’ 
I’ 

I’ dtJ& I’ 5 fl /‘__ t, ‘e .T’ p 
I ” P 

Fig. 4. 

The value of the discontinuity of the modulus is 2k. The discontinuity 

of the ut stress is statically admissible. 

We note that Shied and Drucker [ 11 ] have showed that the pressure 
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satisfies the inequality 

We now proceed to construct the velocity field. For this purpose we 

use the following relationships, L. 10 1 , 

Ex + Exy 
by - a f %k 

7 + Cc2 
oz - cz f ?j3k ox - = f 2/sk 

XY 
= = Gql 7 + 

xz XY 

-I- Ey -I- Eyr 
bz - = III Sk 

=t 
CT% - CT & ‘/Sk o,,--bf Yak 

Tuz 
XL 

32 
-I- BY2 

3VZ 
+ Ez (4.8) 

where 

au, 1 

%=yp tv=-2_,,+,, c 

auv aux 

> 

Following Prandtl, we assume that the plasticized region of the material 

under the punch is moving with a unit velocity dowward. 

ux = uv = 0, u, = 1 

In the sector regions 

ug = u: = 0, &)=!z 
2 

It is clear that the velocity field (4.9) satisfies relationships 

(3.8). In the plasticized regions under the areas RCEFand ABGHwe put 

u _r/‘z v- 2 9 
uz= 5. 

2 ’ 
ux = r/2 

2 ’ 
u*=_q 

It is not difficult to verify that the solution can be now constructed 
following the work of Hill [ 12 1. 'III e stress distribution is determined 

in an analogous manner, as has been done above. The construction of the 
velocity field, however, requires some mnall modifications. 

In suaznary then, it has been shorn that Prandtl’s formula (4.7) is 
also valid for rectangular punches acting on a half-space. 

A further extension of the results obtained would be the solution of 

problems of polygonal punch. ‘lhe solution of these problems, however, 

would require numerical computations, since the magnitude of the pressure 
in this case is not constant. 
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